

Data Generation Speed

• 456,000 Tweets/Xs are sent per minute, which is 656 million Tweets per day Companies like X (former Twitter) generate millions of tweets per minute, requiring fast processing for real-time analysis.

8IG DATA	MapReduce	Problem Scope
	MapReduce is a programming m	odel for data processing
	 The power of MapReduce lies in 1000s of computers, each with set 	i its ability to scale to 100s or everal processor cores
	 How large an amount of work? 	
	Web-Scale data on the order of 7	100s of GBs to TBs or PBs
	 It is likely that the input data set hard drive 	will not fit on a single computer's
	 Hence, a distributed file system is typically required 	(e.g., Google File System- GFS)
		4
1		

8IG DATA		MapReduce	Isolated Tasks
	•	MapReduce divides the worklo tasks and schedule them across	ad into multiple <i>independent</i> cluster nodes
	1	A work performed by each task another	is done in isolation from one
	1	The amount of communication tasks is mainly limited for scalabi	which can be performed by lity reasons
		 The communication overhead the nodes synchronized at model from performing reliable 	d required to keep the data on all times would prevent the ly and efficiently at large scale
			6

BIG	MapReduce	MapReduce: A Bird's-Eye View
 In Map isolatio The ou interme into a s The proof Red The Re Overall map pl 	Reduce, chunks are processed on by tasks called <i>Mappers</i> atputs from the mappers are den- ediate outputs (IOs) and are brou- second set of tasks called <i>Reduc</i> ocess of bringing together IOs in ucers is known as <i>shuffling proc</i> educers produce the final outputs I, MapReduce breaks the data fil- hase and <i>reduce phase</i>	in oted as ught sers s (FOs) oted to a set ess s (FOs) oted to a set ess s (FOs) oted to a set to a set to a set ess s (FOs) oted to a set to a set
Overal map pl	I, MapReduce breaks the data fle hase and reduce phase	ow into two phases,

<text><list-item>
MapReduce Input Files
Input files are where the data for a MapReduce task is initially stored
The input files typically reside in a distributed file system (e.g. HDFS)
The format of input files is arbitrary
Line-based log files
Binary files
Multi-line input records
Or something else entirely

8IG DATA		MapReduce	Fault Tolerance in Hadoop
	•	MapReduce can guide jobs toward when jobs are run on a large clus increases	a successful completion even ter where probability of failures
	•	The primary way that MapReduce ac restarting tasks	chieves fault tolerance is through
	•	If a TT fails to communicate with JT minute in Hadoop), JT will assume the	for a period of time (by default, 1 at TT in question has crashed
		 If the job is still in the map pheexecute <u>all Mappers that previou</u> 	ase, JT asks another TT to re- sly ran at the failed TT
		 If the job is in the reduce pha execute <u>all Reducers that were in</u> 	se, JT asks another TT to re- a progress on the failed TT
			17
17			

8IG DATA		MapReduce	Speculative Execution
	-	A MapReduce job is dominated b	y the slowest task
	-	MapReduce attempts to locate sl redundant (<i>speculative</i>) tasks th before the corresponding straggle	ow tasks (<i>stragglers</i>) and run aat will optimistically commit ers
	-	This process is known as specula	tive execution
		Only one copy of a straggler is all	owed to be speculated
	-	Whichever copy (among the two first, it becomes the definitive cop by JT	o copies) of a task commits y, and the other copy is killed

Aspect	Shared Memory	Message Passing	MapReduce
Communication	Implicit (via loads/stores)	Explicit Messages	Limited and Implicit
Synchronization	Explicit	Implicit (via messages)	Immutable (K, V) Pairs
Hardware Support	Typically Required	None	None
Development Effort	Lower	Higher	Lowest
Tuning Effort	Higher	Lower	Lowest
		LOWEI	Lowest

BIG DATA	MapReduce	
	Advantages and Disadvantages of the model MapReduce	
	 Advantages : Automate aspects of parallelism and of tolerance to failures It allows to the programmer get focus only on functionality The improvements in the library benefit to all the Applications Is scalable and save costs in hardware (<i>commodity hardware</i>), programming and administration 	
	 Disadvantages: Not all the Applications can be adapted to this model, some Models are forced with extra stages in order to adjust the application to the model 	
	 Existence of intermediate values (<i>keys and values</i>) Appropriate only for calculations in <i>batch</i> (batch processing), Not interactive 	22

 EcosystemHadoop: Apache Sqoop: It is a tool for transfer data between Hadoop and storage systems structured as relational databases. 	BIG DATA	Hadoop	1. Introduction
 Allows you to import entire databases or individual tables to HDFS Allow you to import SQL databases toHive. NameSqoopcomes from<i>SQL-to-Hadoop</i> Among the relational databases it supports areMySQL, Oracle, SQL Server, DB2,PostgresSQL It is managed based on commands:sqoopC OMMAND [ARGS] where commandcould be: 	codec	 EcosystemHadoop: Apache Sqoop: It is a tool for transfer dat storage systems structur Allows you to import entit tables to HDFS Allow you to import SQL NameSqoopcomes from: Among the relational dat Server, DB2,PostgresSQ It is managed based on a commandcould be: 	ta between Hadoop and ted as relational databases. re databases or individual databases toHive. SQL-to-Hadoop abases it supports areMySQL, Oracle, SQL L commands:sgoopC OMMAND [ARGS] where mecords import Import a table from a database to HDFS
codegen Generate code to interact with database records Import a table from a database to HDFS create-hive-table Import a table from a database to HDFS eval Evaluate a SQL statement and display the results export Export an HDFS directory to a database table help List available commands	codeg create eval expor help	Igen Generate code to interact with database r te-hive-table Import a table definition into Hive Evaluate a SQL statement and display the ort Export an HDFS directory to a database ta List available commands	records import all-tables Import atables form a database to HDFS import-mainframe Import mainframe database to HDFS import-mainframe Import mainframe database to HDFS list-databases List available databases on a server list-tables List available tables in a database version Display version information

1. Introduction EcosystemHadoop: ApachePig: Source: IBMdeveloperWorks Programming tool whose objective is to abstract the programmer from the use of MapReduce for certain things, using a high-level language called Pig Latin, which enables express parallel processing of data in the form of a sequence of transformations easy to write, understand and maintain. It is ultimately a platform to express analysis of very large data sets along with an infrastructure to evaluate them. • It integrates a compiler that produces MapReduce program sequences. • The afore mentioned compiler takes care of optimizing efficiency automatically. • It allows the programmer to create their own functions to perform specific processing, called UDFs (User defined functions), which the programmer writes in Java, Python, javascript, Ruby orgroovy. · Pig does not have control structures (it does not have conditionals, loops... (although it doesiteratorsabout data)) but is oriented only to data flow. 8

lortonwo	orks D	ata P	latfor	rm				Hortonwo
VERNANCE &			DATA	ACCESS			SECURITY	OPERATION
ata Workflow, Lifecycle & Governance Falcon	Batch Map Reduce	Script Pig	SQL Hive/Tez HCatalog	NoSQL HBase Accumulo	Stream Storm	Others In-Memory Analytics ISV Engines	Authentication Authorization Accounting Data Protection	Provision, Manage & Monitor Ambari
Sqoop Flume NFS WebHDFS		YAR (Hac	N : Data O HI loop Distrib	perating Sy DFS uted File Sy	stem		Storage: HDFS Resources: YARN Access: Hive, Pipeline: Falcon Cluster: Knox	Scheduling Dozie
			DATA MA	NAGEMENT				

	Hortonworks	Cloudera	MapR
Manageability			
Management Tools	Ambari	Cloudera Manager	MapR Control System
Volume Support	No	No	Yes
Heat map, Alarms, Alerts	Yes	Yes	Yes
Integration with REST API	Yes	Yes	Yes
Data and Job	No	No	Yes

8IG DATA	Hadoop	2.ApachePig
	2.ApachePig	1011 day a la and Martin
	Relational operator Operator Descripti DISTINCT FILTER FOREACH GROUP JOIN LIMIT LOAD ORDER SPLIT STOPE	DrS: on Remove duplicates in a relationship Selects a set oftuplesof a relationship based on a condition Iterates the tuples of a relationship, generating a new set of data Groups data into one or more relationships Joins two or more relationships (exists both <i>inner join and outer join</i>) Sets the limit of output tuples Load data from a file system Orders a relationship into one or more relationships Splits a relationship into one or more relationships Store transformed information in the file system
	Diagnostic operation Operator Description DUMP DESCRIBE EXPLAIN	ors (debugging scripts): on Displays the content of a relationship on the screen Displays on the screen the detailed diagram of a relationship: field and type Shows on the screen how operators are grouped in MapReduce processes

BIG DataFrames 1. Introduction So, arise Frameworks that facilitate the implementation of solutions of Big Data: • Hadoop: Framework of Big Data based in the implementation of

the paradigm MapReduce. Provides scalability horizontal. It allows he storage distributed and he prosecution parallel of big volumes of data. Uses as architecture a cluster of servers.

Introduction

3

4

• Spark: Framework of Big Data that aims to sort out the issues of Hadoop. Offers a flow of processes more flexible disengaging the functions Reduce of the Map. Besides, implements the procesing in memory.

BIG DataFrames Introduction 1. Introduction MapReduce JOB SHUFFLE & SORT REDUCE MAP <Clave, > DATOS <Clave, Valor <A, 1> <A, 1> <A, 1> <A, 3> <A, 1) AAC <A, 1> <C, 1> RESULTADO <8, 1> <8, 1> <A, 3> <B, 1> <C, 3> <D, 2> AAC CBD ACD <C, 1> <B, 1> <D, 1> CBD <C, 1> <C, 1> <C, 1> «C, 3» ACO C, 1> <D, 1> <D, 1> <D, 2> 4

(12)

15/2/24

- Linear Support Vector machine
- One-vs-Rest classifier (One-vs-All)
- Naive Bayes
- Factorization machines classifier

SparkML

BIG

DataFrames

Execution of the **pipeline**:

Pipeline (Estimator)

Pipeline.fit()

PipelineModel

(Transformer)

PipelineModel .transform()

• fit (Training/Train/Learning):

Raw

text

Raw

text

• transform (Test/Test/Inference):

Tokenizer

Words

-

Words

Tokenizer

Feature

vectors

-

Feature

vectors

HashingTF

Logistic Regression

Model

Predictions

13

14

4. SparkML

15/2/24

import matplotlib.pyplot as p	Plot of sin(x)			
# Generate data		\wedge	\wedge	5
x = np.linspace(0, 10, 100)	# Create 100 evenly spaced points betwee			1
y = np.sin(x)	# Compute the sine of each point			1
# Plot data				
<pre>plt.plot(x, y, label='sin(x)'</pre>) # Plot x vs y with label 'sin(x)'	\		
plt.xlabel('x')	# Set the x-axis label			
<pre>plt.ylabel('sin(x)')</pre>	# Set the y-axis label		/	
<pre>plt.title('Plot of sin(x)')</pre>	# Set the title of the plot			
plt.legend()	# Show legend			
plt.grid(True)	# Show grid	2 4	6 8	
nlt_show()	# Display the plot		x	

Numpy & matplotlib :

11

Pandas and Seaborn graphics

mport pandas as pd
mport matplotlib.pyplot as plt
Load Iris dataset from seaborn library
nport seaborn as sns
ris = sns.load_dataset('iris')
Display the first few rows of the dataset
rint("First few rows of the Iris dataset:")
rint(iris.head())
Summary statistics
rint("\nSummary statistics of the Iris dataset:")
rint(iris.describe())
Number of samples for each species
rint("\nNumber of samples for each species:")
rint(iris['species'].value_counts())
Plot histograms for each feature
ris.hist{figsize=(10, 8))
<pre>lt.suptitle('Histograms of Iris Features')</pre>
lt.show())
ns.pairplot(iris, hue='species', height=2.5)
<pre>lt.suptitle('Scatter Matrix of Iris Features')</pre>
lt.show()

• Iris dataset is a classic dataset in machine learning and is often used for learning and demonstration purposes. It contains measurements of four features (sepal length, sepal width, petal length, and petal width) of three species of iris flowers (Setosa, Versicolor, and Virginica).:

e	5.1	3.5	1.4	0.2 setosa
1	4.9	3.0	1.4	0.2 setosa
2	4.7	3.2	1.3	0.2 setosa
	4.6	3.1	1.5	0.2 setosa
	5.0	3.6	1.4	0.2 setosa
Sumar	v statistics o	f the Iris da	taset:	
	sepal_length	sepal_width	petal_length	petal width
junt	150.008080	158.808888	150,000000	158,808088
dean	5.843333	3.057333	3.758686	1,199333
std	0.828055	0.435866	1.765298	0.762238
nin	4.308000	2.000008	1.000030	8.100008
25%	5,108080	2.888888	1.668686	8.300000
58%	5.608080	3.000000	4.358080	1.300000
75%	6,408080	3,300008	5,108080	1,800000
	7 008000	A 400008	6.908028	2.568688

