

European Institute of Innovation & Technology

EIT HEI Initiative

Innovation Capacity Building for Higher Education

Sustainable mining and the digital mine role in the digital age Dr.-Ing. Dipl.-Wirt.Ing. Stefan Möllerherm

RAW MATERIALS APPLICATION

Group of minerals

- Fossil fuels (coal, lignite, oil, natural gas, uranium, shale gas, tar sands)
- Ferrous metals (iron)
- Base metals (copper, lead, zinc, tin)
- Alloys (chromite, cobalt, manganese, molybdenum, nickel, niobium, titan, vanadium, rhenium)
- Light metals (bauxite, magnesium)
- Precious metals (gold, silver)
- **Platinum Group Minerals** (platinum, palladium, rhodium, ruthenium, osmium and iridium)
- Industrial minerals (potash, rock salt, phosphate, barite, fluorite)
- Construction materials (sand, gravel, limestone, gypsum)
- Heavy minerals (Wolframite)

Group of minerals

- Fossil fuels (Coal, lignite, oil, natural gas, uranium, shale gas, tar sands)
- Ferrous metals (iron)
- Base metals (copper, lead, zinc, tin,
- **Alloys** (chromite, cobalt, manganese, molybdenum, nickel, niobium, titan, tantalum, vanadium, rhenium)
- Light metals (Bauxite, magnesium)
- Precious metals (gold, silver)
- **Platinum Group Minerals** (platinum, palladium, rhodium, ruthenium, osmium and iridium)
- Industrial minerals (potash or potassium, rock salt (NaCl), phosphate, barite, fluorite)
- Construction materials (sand, gravel, limestone, gypsum)
- Heavy minerals (Wolframite)

Group of minerals

- Mica
- Kaolin or china clay
- Antimony or stibium
- Perlite
- **Disthene-Group** (Disthene, Andalusite, Sillimanite)
- Beryllium
- Zircon

Technology minerals

- Germanium
- Gallium
- Indium
- Lithium
- Rare Earth Elements REE
 - <u>Light Rare Earth Elements</u>: Lanthanum, Cerium, Praseodymium, Neodymium, Samarium, Europium
 - <u>Heavy Rare Earth Elements</u>: Gadolinium, Dysprosium, Terbium, Yttrium, Erbium
- Scandium

EXAMPLES OF APPLICATIONS

Energy supply, Industry 4.0, Smartphones

ELEMENTS OF A SMARTPHONE

SCREEN

Indium tin oxide is a mixture of indium oxide and tin oxide, used in a transparent film in the screen that conducts electricity. This allows the screen to function as a touch screen.

The glass used on the majority of smartphones in an aluminosilicate glass, composed of a mix of alumina (Al_2O_3) and silica (SiO_2) . This glass also contains potassium ions, which help to strengthen it.

BATTERY

Oxygen

A variety of Rare Earth Element compounds are used in small quantities to produce the colors in the smartphone's screen. Some compounds are also used to reduce UV light penetration into the phone.

The majority of phones use lithium ion batteries, which are composed of lithium cobalt oxide as a positive electrode and graphite (carbon) as the negative electrode. Some batteries use other metals, such as manganese, in the place of

cobalt. The battery's casing in made of aluminum

Magnesium compounds are alloyed to make some phone cases, whilst many are made of plastics. Plastics will also include flame retardant compounds, some of which contain bromine, whilst nickel can be included to reduce electromagnetic interference.

Copper is used for wiring in the phone, whilst

copper, gold and silver are the major metals

from which micro electrical components are fashioned. Tantalum is the major component

Nickel is used in the microphone as well as for

other electrical connections. Alloys including

the elements praseodymium, gadolinium and

neodymium are used in the magnets in the speaker and microphone. Neodymium, terbium and dysprosium in the vibration unit.

of micro-capacitors.

Technische Hochschule Georg Agricola

Pure silicon is used to manufacture the chip in the phone. It is oxidized to produce nonconducting regions, then other elements are added in other to allow the chip to conduct electricity.

Tin & lead are used to solder electronics in the phone. Newer lead-free solders use a mix of tin, copper and silver.

Wind mill

Technische Hochschule **Georg Agricola**

European Union

Materials for the construction of a wind mill

	Typical per cent per weight
Concrete	60 – 65%
Steel	30 – 35%
Composite material	2 – 3%
E-components	< 1%
Copper	< 1%
Aluminium	< 1%
PVC	< 1%
Lubricants	< 1%

Source: DERA 2016

Raw materials in wind mills

Technische Hochschule Georg Agricola

Raw material	Wind mill with gear, on shore wo foundation	2 MW off shore wind mill	Wind mill with gear, off shore with foundation	On shore wind mill
Steel/iron	115	148	340	364
Copper	2	2,75		4,6
Aluminium	2	0,42	2	2,6
Concrete		1050		671
Gravel		150		

Material consumption in t/MW

Source: DERA 2016

Comparison of wind power generator

Technische Hochschule Georg Agricola

Туре	Copper	Permanent magnets	HTS	
Rated power	8 MW	8MW	8 MW	
Revolution speed	11,5 rpm	11,5 rpm	11,5 rpm	
Efficiency	93%	95%	98%	
Size				
Diameter	11 m	7	3,8 m	
Length	2,8	2,6 m	2,3 m	
Raw materials				
Copper	80 t	15,5 t	8 t	
Electric steel	330 t	150 t	70 t	
REE	0 t	2 t (Nd, Dy)	0,02 t (Y, La, Ce, Gd)	

Source: DERA 2016

HTS = High Temperature Supra conductor

HEI4S:

Use of NdFeB magnets in different sectors (2012)

NdFeB=Neodymium Iron Boron

European Institute of Innovation & Technology

Funded by the European Union

others

- wind power
- sensors, MRT
- audio (head phones,...)
- electric motors (industry, household,...)
- IT (HHD-, CD-, DVD-devices)
- traction motor for electric two-wheeler
- traction motor for hybrid- and electric automobiles

Solar module

Conventional, traditional or wafer-based cells made of crystalline silicon

"Thin film solar cells"

- Cadmium Telluride (CdTe) cells
- Copper Indium Gallium
 Selenide (CIGS) cells

Amorphous silicon or amorphous silicon-germanium solar cells

Function of a solar module

Energy storage

Technische Hochschule Georg Agricola

Superconductor

Technische Hochschule Georg Agricola

Composition of a HTS

European Union

Global production and forecast for HTS

Technische Hochschule Georg Agricola

Demand for HTS in engines, generators, transformers and cables

Raw material	Production 2013 (t)	Demand 2013 (t)	Forecast 2035 (t)
Silver	26.241 (Mine)	6	720
Bismuth	17.850 (Proc.)	1	125
Calcium	1.500.000	0,2	24
Ytterbium	5.500	0,0	0,4
Strontium	330.000	0,5	53
Barium	5.431.156	0,0	1,4
Cobalt	129.763 (Mine)	0,0	6,2
Chrome	13.422.102 (Mine)	0,2	40
Molybdenum	270.739 (Mine)	0,2	40
Nickel	2.601.745 (Mine)	0,9	142
Wolfram	82.000 (Mine)	0,1	10
Copper	18.365.341 (Mine)	1,7	260

Industry 4.0 and IoT

Technische Hochschule Georg Agricola

Materials in temperature detectors

Type of detector	Material
Temperature measurement	
Pyroelectric detector	LiTaO ₃ Pb ₃ Ge ₃ O ₁₁ as detector material
Non-contact temperature measurement	Photodiode: Germanium, Silicon, InGaAs
Resistance thermometer	Hot conductor: metal oxides of Mn, Ni, Co, Cu, Fe, Ti Cold conductor: Pt100, Pb(Zi,Ti)O ₃ , BaTiO ₃
Thermal elements	NiCr or Ni
Semi-conductor temperature sensor	Silicon, Germanium
Bi-metallic switch	Zinc, steel, brass
Source: DERA 2016	

Materials in flow and pressure detectors

Technische Hochschule Georg Agricola

Type of detector	Material
Flow measurement	
Ultrasonic sensor	Piezo-electric ceramics, modified lead- zirconat-titanat, and for low-voltage actors: Lead-manganese-niobat
Coriolis mass flow meter	Stainless steel, titanium, tantal
Thermal flow meter	Heated fine metal wire (e.g. platinum, wolfram or its alloys)
Pressure measurement	
Piezo-resistive pressure sensor	Silicon
Piezo-electric pressure sensor	Lead-zirconat-titanat
Hall-generator	Silicon, magnet

Source: DERA 2016

Additive manufacturing

Dr.-Ing. Dipl.-Wirt.Ing. Stefan Möllerherm

Methods of additive manufacturing

Technische Hochschule Georg Agricola

Method	Principle	Raw material	Activation energy	Market
VAT Photopoly- merisation	Hardening of liquid photopolymer	Plastics, ceramics (liquid, pasty)	UV radiation of laser or lamp	prototyping
Powder Bed Fusion (PBF)	Selective melting of a powder bed	Metal, plastics, ceramic (powder)	Heat radiation of laser or radiator	Prototyping direct part
Direct Energy Deposition (DED)	Targeted melting on the job	Metal powder	Heat radiation of laser or radiator	Direct part repair
Material extrusion	Pointwise charge of melted material	Plastics	Heat radiation in nozzle or pressure head	prototyping
Binder jetting (3D-Printing)	Selective gluing by pointwise binder charge	Metal, plastics ceramics (powder)	No (liquid binding agent)	Prototyping, cast, direct part

Jet engine

Stator of the

turbine

Technische Hochschule Georg Agricola

Compressor for the pressure cabin

Compressor for the pneumatic system

Jet engine air inlet Centrifugal compressor driven by the turbine

Flange around the jet pipe suppling the cabin with warm air

Jet pipe

Conus of the turbine

Main drive shaft combining turbine and compressor

Flange for the starter engine (not mounted)

Fuel pipes to the fuel nozzles in the combustion chambers

16 combustion chambers surrounding the engine

Source: DERA 2016

HEI4S3 RM

Super alloys usage (2012)

Raw material in medicine

	Weight/(g)				
Metal	hip prosthesis with Titan shaft	hip prosthesis with CoCrMo shaft	Knee prosthesis with Titan	Knee prosthesis with CoCrMo	
Cobalt	140	720		277	
Chrome	60	300		125	
Molybdenum	15	70		27	
Titan	435		280		
total	650	1.090	280	430	
Ceit Europear	n Institute of Funded by the European Un	ne Nion	HEI4S3	RM 35	

Raw materials in medical applications

HEI4S3

Source: DERA 2016

RAW MATERIALS DEMAND FORESIGHT

Dr.-Ing. Dipl.-Wirt.Ing. Stefan Möllerherm

IEA Technology Scenarios for Electricity Installed Capacity

4 degree scenario

Hydro (excluding pumped storage) Coal Natural gas Nuclear Solar Geothermal Coean

2 degree scenario

Geothermal

GW = gigawatt

Source: IEA 2016

Ocean

Future metal demand for wind energy

Dr.-Ing. Dipl.-Wirt.Ing. Stefan Möllerherm

Cumulative Demand for Indium for CIGS Solar PV Technology

Source:WorldBank 2017

Demand for Lithium-Ion Battery Technology

Current (2012) and projected (2030) annual demand of raw materials used for selected low-carbon energy technologies

Technische Hochschule Georg Agricola

Dr.-Ing. Dipl.-Wirt.Ing. Stefan Möllerherm

Technische Hochschule Georg Agricola

Raw materials	Production 2013	Requirement 2013	Requires preview 2035
Raw steel	1.655.549.570	17.510.000	41.496.660 (23.252.600-55.271.760)
Copper	18.365.341 (M) 21.446.333 (R)	103.000	2444.098 (136.780- 325.128)
Aluminum	47.811.880 (R)	103.000	244.098 (136.780-325.128)
Chrome	13.422.102 (M)	48.884	115.849 (64.916-154.306)
Nickel	2.601.745 (M) 1.955.132 (R)	36.313	86.057 (48.222114.624)
Molybdenum	270.739 (M)	7.457	17.673 (9.903-23.539)
Manganese	16.900.000	4.975	11.790 (6.606-15.704)
Tin	289.790 (M) 362.996 (R)	8.096	19.186 (10.751-25.555)
Nd, Pr	36.600	To low	10.100 (3.800-17.600)
Dy, Tb	2.330	To low	500 (130-1.170)

Need for REE

Worldwide usage of REE in

2012

Technische Hochschule Georg Agricola

Element	Magnet (t REO)	Batteries (t REO)	Metallurgy (t REO)	FCC catalyst (t REO)	Car catalyst (t REO)	Other catalysts (t REO)
Lanthanum		8.185	3.085	13.950	450	
Cerium		1.275	8.490	800	5.965	1.250
Praseodymium	3.800		195			
Neodymium	17.640		480		340	
Samarium	500					
Gadolinium	360		290			
Terbium	70					
Dysprosium	835					
Erbium						
Ytterbium						
Sum	23.005	9.460	12.540	14.750	6.755	1.250
Source: DERA 2016		Dr. Inc. Dial	Wint Ing Ctofen Mall	a vla a visa		(a

Dr.-Ing. Dipl.-Wirt.Ing. Stefan Möllerherm

Demand of REE (light)

Technische Hochschule Georg Agricola

Element	Technology	Demand 2013 (t)	Demand 2035 (t)
Lanthanum	SOFC	10	80
Cerium	SOFC	2	20
Neodymium	Automatic piloting of cars	0	16
Neodymium	Micro-energy harvesting	2,9	1.207
Neodymium	Solid body laser for industrial manufacturing	0,04	0,3
Neodymium/ Praseodymium	High performance permanent magnets	28.900	62.400
Nd/Pr	Total demand	28.903	63.624
Nd/Pr	Demand / production 2013	79%	174%
La	Total demand	10	80
La	Demand / production 2013	0%	0%
Се	Total demand	2	20
Се	Demand / production 2013	0%	0%

Demand of REE (heavy)

Technische Hochschule Georg Agricola

Element	Technology	Demand 2013 (t)	Demand 2035 (t)
Ytterbium	Automatic piloting of cars	0	1.004
Ytterbium	SOFC	0,7	5
Ytterbium	Solid body laser for industrial manufacturing	15,1	43,8
Ytterbium	High temperature supra conductor	0	0,9
Dysprosium	Micro-energy harvesting	0,4	162,6
Dysprosium/ Terbium	High performance permanent magnets	2.000	7.200
Y	Total demand	16	1.054
Υ	Demand / production 2013	0,3%	19%
Dy/Tb	Total demand	2.000	7.363
Dy/Tb	Demand / production 2013	85%	313%
ource: DERA 2016			

Gallium

Application	2010 (%)
Integrated circuits	41
LED	25
Alloys, batteries, magnets	17
Solar technologies	17
	100

Technology	Demand 2013 (t)	Demand 2035 (t)
White LED	6	19
High performance micro chips	38	86
Thin layer PV	45	25
Total demand	89	130
Primary production	25%	37%
Demand for refined production	45%	65%

Germanium

Application	2010 (%)
Infrared optics	30
Glass fibers	20
Polymerisation catalyst	20
Electronics and solar applications	15
Others: (e.g. illuminant, metallurgy, chemotherapy)	15
	100

Technology	Demand 2013 (t)	Demand 2035 (t)
Glass fibers	56	118
Total demand	56	118
Demand for refined production	39%	81%

Source: DERA 2016

Indium

Technische Hochschule Georg Agricola

Application	2010 (%)	Technology	Demand	Demand
Flat screens	55		2013 (t)	2035 (t)
Alloys and brazing solder	10	Indium-Tin-Oxide (ITO) in display	130	274
PV	8	technology	130	274
Heat conducting material	6	White LED	0,1	0,3
Batteries	5	Thin layer PV	103	87
Alloys	4	Total demand	233	361
Semi-conductor	3	Demand for		
Others	9	refined production	29%	45%

Cobalt	
Application	2010 (%)
Batteries	41
Super alloys (Ni, Fe, Co, Cr)	16
Hard metal (carbide, diamante tools)	10
High performance fast cutting steel and other alloys	7
Pigments: glass, enamel, plastics, ceramics, textiles	6
Magnets	5
Catalyst	5
Animal feed, biotechnology, electrolysis,	4
Adhesion means for tires, drying mean for soap and colors	4

Technology	Demand 2013 (t)	Demand 2035 (t)
CCS	1	25
Lithium Ion high performance electricity storages	1.200	110.000
Micro-energy harvesting out of the environment energy	0,5	203
Synthetic fuels	0	2.000
Medical implants	710	1.070
Super alloys	3.100	8.300
High temperature supra conductor	0	12
Total demand	5.012	121.811
Demand for refined production	6%	142%

Use of copper in the EU

Application	2011 (%)
Electrical infrastructure and equipment	41
Buildings	13
Machines and equipment	13
Automobile	10
Electronics and ICT	7
Traffic (other)	4
Other applications	12
	100

Technology	Demand 2013	Demand 2035
Electrical traction motor in hybrid, electrical, fuel cell cars	low	5.000.000
RFID Radio Frequency Identification	162	10.800
Micro-electrical capacitor	52	350
Thin layer PV	136	74
CCS	<1	2.338
Inductive transmission of electrical energy	Max 7	1.138
Micro-energy harvesting	43	18.185
Wind mills	103.000	244.098
Medical tomography (Copper and non-ferrous metals)	15.800	53.000
High temperature supra conductor	2	400
Additive manufacturing (3D-printer)	46	9.380
Total demand	119.049	5.339.763
Demand / mine production 2013	0,6%	29%
Demand / refinery 2013 DrIng. DiplWirt.Ing. Stefan	Möllerherm 0,6%	25%

Lithium

Technische Hochschule Georg Agricola

Application	2013 (%)	Technology	Demand	Demand
Glass, ceramics	35		2013 (t)	2035 (t)
Batteries	29	Alloys for airframe light construction	0	4.650
Grease	9	Lithium Ion high		
Polymer and pharmaceuticals	5	performance electricity storages	607	110.000
Air cleaning	5	for cars		
Aluminum melt	1	Total demand	607	114.650
Continuous casting	6	Demand/ mine	2%	385%
Other application	10	production 2013	270	
	100			

Platinum

Technische Hochschule Georg Agricola

Application	2013 (%)
Car catalyst	36
Jewelry	35
Investment	10
Chemical catalyst	6
Electronics	3
Medical technology (incl. dental technology	2
Petrochemical industry	2
Glass	1
Other application	5
	100

Technology	Demand 2013 (t)	Demand 2035 (t)
Fuel cell e-vehicles	0	max 93
Synthetic fuels	0	20
Total demand	0	113
Demand/ mine production 2013	0%	60%

Source: DERA 2016

Rhenium

Application	2013 (%)
Aerospace	63
Gas turbines	13
Catalyst	9
Car	5
Tools	2
Oil and gas	2
Other application	5
	100

Technology	Demand 2013 (t)	Demand 2035 (t)
Super alloys	46	120
Total demand	46	120
Demand/ mine production 2013	98%	250%

Scandium

Application	2013 (%)	Technology	Demand	Demand
Aluminum alloy	85		2013 (t)	2035 (t)
Illumination	10	SOFC	1,1	9
Fuel cell	5	Total demand	1,1	9
Other application	5	Demand/ mine production 2013	17%	138%
	100	production 2010		

Tantalum

Application	2013 (%)
Capacitors	40
Super alloys	21
Sputter targets for coating processes	12
Rolled Products	11
Carbide containing tools and cutting steel	10
Chemicals	6
	100

Technology	Demand 2013 (t)	Demand 2035 (t)
Micro-electrical capacitors	128	1.070
Super alloys	370	1.000
Total demand	498	2.070
Demand/ mine production 2013	38%	159%

Titan

Application	2013 (%)
Colors	56
Plastics	27
Paper	9
Carbide, alloys and chemicals	5
Other	3
	100

Technology	Demand 2013 (t)	Demand 2035 (t)
Micro-electrical capacitors	122	800
Micro-energy harvesting	0,3	126
Sea water desalination	8.100	39.000
Medical implants	820	1.240
Total demand	9.042	41.166
Demand/ mine production 2013	3,8%	17,5%

Tin

Technische Hochschule Georg Agricola

Application	2013 (%)
Brazing solder	52
Tin plate	16-17
Chemicals	23
Bronze and cast alloys	5-6
Flat glass production	2
Other	0-2
	100

Technology	Demand 2013 (t)	Demand 2035 (t)
Lead free brazing solder	173.400	133.600
Micro-electrical capacitors	30	210
Micro-energy harvesting	0,2	77,2
Wind mills	8.096	19.186
Total demand	181.526	153.073
Demand/ mine production 2013	63%	53%
Demand/ refined production 2013	50%	42%

THANK YOU FOR ATTENTION!

